DET KGL. DANSKE VIDENSKABERNES SELSKAB

THE POTENTIAL FUNCTION of METHANE
 WITH AN APPENDIX ON ACETYLENE

BY

BØRGE BAK

K OBENHAVN
I KOMMISSION HOS EJNAR MUNKSGAARD

CONTENTS

Page
I. Introduction 3
II. Symmetry Considerations 4
III. Formulation of Potential Function 11
IV. Relations between Force Constants and Vibration Frequencies 13
V. Numerical Calculation of the Force Constants of the Potential Function 19
VI. Comparison between Calculated Frequencies and Experimentally De- termined Ones 20
VII. Physical Significance of the Results Obtained 26
VIII. Brief Treatment of the Acetylene Molecule 29
IX. Summary 33

THE INTRAMOLECULAR POTENTIAL of METHANE

I. Introduction.

TThe first physicist to formulate the general quadratic vibrational function of Methane was Jenny Rosenthal. ${ }^{1}$ The complete function includes 5 constants. If the numerical values of these 5 constants are known, a precalculation of the vibration frequencies of methane and deuterated methanes can be carried out.

The first calculation of all 5 constants was published by Dennison and Johnson. ${ }^{2}$ At that time only insufficient experimental material from the vibrational analysis of Raman and infrared spectra was available. Hence Dennison and Johnson had to use data from the fine structure of the infrared bands of methane, this resulting in a less accurate determination of the constants as shown below.

Shortly afterwards Barker and Ginsburg ${ }^{3}$ published data from the infrared absorption spectrum of $\mathrm{CH}_{3} \mathrm{D}$. This in connexion with the well-known vibration frequencies of methane itself enabled a first calculation of the 5 constants on a pure vibrational basis. However, the calculation could not be carried through without a certain arbitrariness. Due to the method used the constants calculated were sometimes real figures, sometimes imaginary ones.-In 1937 Benedict, Morikawa, Barnes and Taylor ${ }^{4}$ published their great work on the infrared spectra of mixtures of deuterated methanes. In their paper a forthcoming publication is announced where a potential function, including anharmonic terms, would be used. Apparently the paper has not yet been published.

[^0]As will be seen from what precedes, it will be of importance to have a statement where, firstly, a survey of all the experimental material published is given, and, secondly, this material is utilized for a calculation of the 5 constants in the potential function of methane. The validity of the numerical values should be tested by precalculating the frequencies of all deuterated methanes. We shall here follow the programme sketched, thus for the first time giving a complete survey of the correctness by which we can precalculate the vibration spectra of methane and deuterated methanes, using a quadratic potential function.

Before the calculations are started some words should be said of the method used for attacking the problem. In 1934 Howard and Bright Wilson, Jr. ${ }^{1}$ demonstrated the use of a general normal-coordinate method, showing the convenience of employing the so-called 'symmetry coordinates'. To derive full advantage of this paper an elementary knowledge of group theory is necessary. This could be acquired by consulting an article by Rosenthal and Murphy. ${ }^{2}$ The two papers just cited should be studied, if necessary, before reading the present paper.

II. Symmetry Considerations.

The methane molecule is placed in an orthogonal xyz coordinate system as shown in double-projection in fig. 1.

The hydrogen atoms are placed in the positions $1,2,3$, and 4, the carbon atom in the zero point of the coordinate system. The components of the displacement of the carbon atom are denoted by x_{0}, y_{0}, z_{0}, the corresponding figures for hydrogen no. j are x_{j}, y_{j}, z_{j}.

Geometrically $C H_{4}$ and $C D_{4}$ belong to the point group T_{D}. In table I the characters for the normal modes of vibration are given.

The p-axis in the C_{3}^{p}-symbol is the line from the carbon atom to $H(1)$.-The symmetry element σ_{I} is the plane through $H(1)-C-H(3)$.-Beneath a survey is taken of the ways in

[^1]

Fig. 1.

Table I.

Covering Operation	E	$8 C_{3}$	$3 C_{2}$	$6 \sigma_{d}$	$6 S_{4}$	Number of modes	Degree of degeneracy
Symmetry class:							
A_{1}	1	1	1	1	1	1	1
A_{2}	1	1	1	-1	-1	0	
E	2	-1	2	0	0	1	2
T_{2}	3	0	-1	1	1	2	3
T_{1}	3	0	-1	-1	1	0	
Symmetry elements especially studied:		C_{3}^{p}	C_{2}^{x}	$\sigma_{\text {I }}$	S_{4}^{y}		

which the displacement components x_{j}, y_{j}, z_{j} vary during the covering operations of the molecule.

By a rotation of 120° round the p-axis

$$
\begin{array}{lll}
x_{0} \rightarrow y_{0} & y_{0} \rightarrow z_{0} & z_{0} \rightarrow x_{0} \\
x_{1} \rightarrow y_{1} & y_{1} \rightarrow z_{1} & z_{1} \rightarrow x_{1} \\
x_{2} \rightarrow y_{4} & y_{2} \rightarrow z_{4} & z_{2} \rightarrow x_{4} \\
x_{3} \rightarrow y_{2} & y_{3} \rightarrow z_{2} & z_{3} \rightarrow x_{2} \\
x_{4} \rightarrow y_{3} & y_{4} \rightarrow z_{3} & z_{4} \rightarrow x_{3}
\end{array}
$$

By a rotation of 180° round the x-axis

$$
\begin{array}{lll}
x_{0} \rightarrow x_{0} & y_{0} \rightarrow-y_{0} & z_{0} \rightarrow-z_{0} \\
x_{1} \rightarrow x_{4} & y_{1} \rightarrow-y_{4} & z_{1} \rightarrow-z_{4} \\
x_{2} \rightarrow x_{3} & y_{2} \rightarrow-y_{3} & z_{2} \rightarrow-z_{3} \\
x_{3} \rightarrow x_{2} & y_{3} \rightarrow-y_{2} & z_{3} \rightarrow-z_{2} \\
x_{4} \rightarrow x_{1} & y_{4} \rightarrow y_{1} & z_{4} \rightarrow-z_{1}
\end{array}
$$

By a reflexion in the plane σ_{I}

$$
\begin{array}{lll}
x_{0} \rightarrow z_{0} & !_{0} \rightarrow y_{0} & z_{0} \rightarrow x_{0} \\
x_{1} \rightarrow z_{1} & y_{1} \rightarrow y_{1} & z_{1} \rightarrow x_{1} \\
x_{2} \rightarrow z_{4} & y_{2} \rightarrow y_{4} & z_{2} \rightarrow x_{4} \\
x_{3} \rightarrow z_{3} & !_{3} \rightarrow y_{3} & z_{3} \rightarrow x_{3} \\
x_{4} \rightarrow z_{2} & y_{4} \rightarrow y_{2} & z_{4} \rightarrow x_{2}
\end{array}
$$

By a 'rotatory reflexion' of 90° round the y-axis

$x_{0} \rightarrow z_{0}$	$y_{0} \rightarrow-y_{0}$	$z_{0} \rightarrow-x_{0}$
$x_{1} \rightarrow z_{2}$	$y_{1} \rightarrow-y_{2}$	$z_{1} \rightarrow-x_{2}$
$x_{2} \rightarrow z_{3}$	$y_{2} \rightarrow-y_{3}$	$z_{2} \rightarrow-x_{3}$
$x_{3} \rightarrow z_{4}$	$y_{3} \rightarrow-y_{4}$	$z_{3} \rightarrow-x_{4}$
$x_{4} \rightarrow z_{1}$	$y_{4} \rightarrow-y_{1}$	$z_{4} \rightarrow-x_{1}$

We may now pass on to constructing the symmetry coordinates.

Symmetry coordinate of the A_{1}-class $\left(S_{1}\right)$.

The vibration picture of the totally symmetrical vibration (frequency ν_{1}) could be drawn immediately as shown in fig. 2 (doub-le-projection).

Fig. 2.
In a somewhat loose, but shorthand formulation the amplitude proportions are given by

$$
\left.\begin{array}{l}
x_{0}: y_{0}: z_{0}: x_{1}: y_{1}: z_{1}: x_{2}: y_{2}: z_{2}: x_{3}: y_{3}: z_{3}: x_{4}: y_{4}: z_{4} \tag{1}\\
=0: 0: 0: 1: 1: 1:-1:-1: 1:-1: 1:-1: 1:-1:-1
\end{array}\right\}
$$

A 'symmetry coordinate' having the symmetry properties of the A_{1}-class recorded in table I, is easily seen to be

$$
S_{1}=x_{1}-x_{2}-x_{3}+x_{4}+y_{1}-y_{2}+y_{3}-y_{4}+z_{1}+z_{2}-z_{3}-z_{4} .
$$

The conditions that S_{1} should be zero for translational and rotational movements of the molecule as a whole, are fulfilled.

Symmetry coordinates of the E-class (S_{2} and S_{3}).

According to table I there is one double degenerate vibration in this class. Our task is to find the vibration pictures of two

Fig. 3.
mutually orthogonal vibrations, vibrating with the same frequency $\left(\nu_{2 a b}\right)$. To find these vibration pictures one of course makes use of the fact that $\nu_{2 a b}$ is experimentally found to be a so-called 'hydrogen deformation' frequency ($\nu_{2 a b} \sim 1500 \mathrm{~cm}^{-1}$). One of these with symmetry properties as demanded by table I is easily drawn (fig. 3).

An arbitrarily chosen vibration of the E-class, as the one drawn in fig. 3, could generally be conceived as having been formed by a suitable superposition of the two fundamental frequencies $\nu_{2 a}$ and $\nu_{2 b}$ of the class + possibly normal vibrations of higher symmetry, that is, in this case the totally symmetrical vibration ν_{1}. We first want to see if the vibration of fig. 3 has a totally symmetrical component. Actually it has, as the amplitude proportions

$$
\begin{align*}
& x_{0}: y_{0}: z_{0}: x_{1}: y_{1}: z_{1}: x_{2}: y_{2}: z_{2}: x_{3}: y_{3}: z_{3}: x_{4}: y_{4}: z_{4}= \tag{2}\\
& =0: 0: 0: 0: 1: 0: 0:-1: 0: 0: 1: 0: 0:-1: 0
\end{align*}
$$

are not orthogonal to (1).
To find the pure E-class component

$$
\begin{equation*}
x_{0}^{\prime}: y_{0}^{\prime}: z_{0}^{\prime}: x_{1}^{\prime}: y_{1}^{\prime}: z_{1}^{\prime}: x_{2}^{\prime}: y_{2}^{\prime}: z_{2}^{\prime}: x_{3}^{\prime}: y_{3}^{\prime}: z_{3}^{\prime}: x_{4}^{\prime}: y_{4}^{\prime}: z_{4}^{\prime} \tag{3}
\end{equation*}
$$

of the fig. 3 vibration, we must solve the vector equation

$$
(1)+(3)=k(2)
$$

k (2) stands for a vector, the components of which are found from (2) by multiplying each component by k. This immediately gives the 12 equations:

$$
1+x_{1}^{\prime}=0 \quad 1+y_{1}^{\prime}=k \quad 1+z_{1}^{\prime}=0
$$

and so on. The value of k is found by making use of the condition that (1) and (3) should be mutually orthogonal. We find $k=3$ and consequently
$(3)=0: 0: 0:-1: 2:-1: 1:-2:-1: 1: 2: 1:-1:-2: 1$.
The vibration picture becomes (fig. 4):

Fig. 4.

Thus, having found one pure E-class vibration we easily find another orthogonal to the first one. The vibrating molecule of fig. 4 is simply turned 120° round the p-axis. After the rotation the molecule of course still vibrates with the same frequency as before. The amplitude proportions are

$$
\begin{equation*}
0: 0: 0: 2:-1:-1:-2: 1:-1:-2:-1: 1: 2: 1: 1 . \tag{4}
\end{equation*}
$$

(3) and (4) do not make out a pair of normal vibrations, as they are not mutually orthogonal. But we must be able to form (4) by a superposition of (3) and the corresponding orthogonal normal vibration (5), which means that (5) can be determined by the relation

$$
(5)+(3)=k(4)
$$

The equation is solved as demonstrated above. The result is that $k=-2$ and

$$
(5)=0: 0: 0:-3: 0: 3: 3: 0: 3: 3: 0:-3:-3: 0:-3 .
$$

Consequently the symmetry coordinates chosen are
$S_{2}=-x_{1}+x_{2}+x_{3}-x_{4}-z_{1}-z_{2}+z_{3}+z_{4}+2\left(y_{1}-y_{2}+y_{3}-y_{4}\right)$ $S_{3}=3\left(-x_{1}+x_{2}+x_{3}-x_{4}+z_{1}+z_{2}-z_{3}-z_{4}\right)$.

Demonstrating that the coordinates above fulfil the requirements of table I we have:

The coordinate S_{i}, having been subjected to a symmetry operation, is denoted by S_{i}^{\prime}. By a rotation of 180° round the x-axis

$$
\begin{aligned}
& S_{2}^{\prime}=S_{2} \\
& S_{3}^{\prime}=S_{3},
\end{aligned}
$$

that is, the character (the sum of diagonal elements) is 2 , consistent with table I.- By a rotation of 120° round the p-axis

$$
\begin{aligned}
& S_{2}^{\prime}=-0.5 S_{2}+0.5 S_{3} \\
& S_{3}^{\prime}=-1.5 S_{2}-0.5 S_{3}
\end{aligned}
$$

which means that the character is - 1 as demanded by table I. -In an analogous manner it is shown that the characters are zero by the operations σ_{I} and S_{4}^{y}.

Symmetry coordinates of the T_{2}-class $\left(S_{4}, S_{5}, S_{6}, S_{7}, S_{8}, S_{9}\right)$.
This class contains two triple-degenerate vibrations. Following a procedure quite analogous to the one sketched above we get for the three components of one of the vibrations

$$
\begin{aligned}
& S_{5}=-4 x_{0}+\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \\
& S_{4}=-4 y_{0}+\left(y_{1}+y_{2}+y_{3}+y_{4}\right) \\
& S_{6}=-4 z_{0}+\left(z_{1}+z_{2}+z_{3}+z_{4}\right) .
\end{aligned}
$$

The components of the second triple-degenerate vibration are chosen as
$S_{7}=-x_{1}-x_{2}+x_{3}+x_{4}-z_{1}+z_{2}+z_{3}-z_{4}$
$S_{8}=\quad-z_{1}+z_{2}-z_{3}+z_{4}-y_{1}-y_{2}+y_{3}+y_{4}$
$S_{9}=-x_{1}+x_{2}-x_{3}+x_{4} \quad-y_{1}+y_{2}+y_{3}-y_{4}$.

III. Formulation of the Potential Function.

Wishing to formulate the potential as the quadratic expression commonest possible we write the contribution of the vibrations in the A_{1}-class as

$$
12 V=a_{1} S_{1}^{2}
$$

The contribution from the E-class is preliminarily written

$$
\Delta 2 V=a_{2}\left(S_{2}^{2}+f S_{3}^{2}\right)
$$

The constant f can be determined by the condition that $\Delta 2 \mathrm{~V}$ is invariant during any covering operation of the molecule. Thus by a rotation of 120° round the p-axis

$$
\begin{aligned}
& \Delta 2 V=a_{2}\left(S_{2}^{2}+f S_{3}^{2}\right) \rightarrow a_{2}\left[\left(-0.5 S_{2}+0.5 S_{3}\right)^{2}+\right. \\
& \left.+f\left(-1.5 S_{2}-0.5 S_{3}\right)^{2}\right]=a_{2}\left[S_{2 .}^{2}(0.25+2.25 f)+S_{3}^{2}(0.25+0.25 f)+\right. \\
& \left.+S_{2} S_{3}(-0.50+1.50 f)\right]
\end{aligned}
$$

Identity demands that $f={ }^{1 / 3}$.
Before formulating the potential contribution from the T_{2} class we shortly summarize the symmetry properties of the coordinates.

Coordinate	Operation	C_{2}^{x}	${ }^{\text {I }}$	S_{4}^{y}	C_{3}^{p}
$S_{4}{ }^{\prime}$		$-S_{4}$	S_{4}	$-S_{4}$	S_{6}
$S_{5}{ }^{\prime}$		S_{5}	S_{6}	S_{6}	S_{4}
$S_{6}{ }^{\prime}$		$-S_{6}$	S_{5}	$-S_{5}$	S_{5}
$S_{7}{ }^{\prime}$		$-S_{7}$	S_{7}	$-S_{7}$	S_{9}
$S_{8}{ }^{\prime}$		S_{8}	S_{9}	S_{9}	S_{7}
$S_{9}{ }^{\prime}$		$-S_{9}$	S_{8}	S_{8}	S_{8}

Remembering that only symmetry coordinates with common symmetry properties can form 'mixed' products we get

$$
\Delta 2 V=a_{3}\left(S_{4}^{2}+S_{5}^{2}+S_{6}^{2}\right)+a_{4}\left(S_{4} S_{7}+S_{5} S_{8}+S_{6} S_{9}\right)+a_{5}\left(S_{7}^{2}+S_{8}^{2}+S_{9}^{2}\right)
$$

The complete quadratic potential function consequently becomes

$$
\begin{aligned}
& 2 V=a_{1} S_{1}^{2}+a_{2}\left(S_{2}^{2}+\frac{1}{3} S_{3}^{2}\right)+a_{3}\left(S_{4}^{2}+S_{5}^{2}+S_{6}^{2}\right)+ \\
& +a_{4}\left(S_{4} S_{7}+S_{5} S_{8}+S_{6} S_{9}\right)+a_{5}\left(S_{7}^{2}+S_{8}^{2}+S_{9}^{2}\right)
\end{aligned}
$$

The simplicity, by which the problems have been solved here, should be compared with the complexity of e. g. Rosenthal's paper. ${ }^{1}$

[^2]
IV. Relations between Force Constants and Vibration Frequencies.

1. CH_{4} and CD_{4}.

Solving the problem of finding these relation in the usual way by means of the Lagrangian equations a. s. o., we get:

The A_{1}-class.

$$
\begin{equation*}
\varkappa_{1}=4 \pi^{2} \nu_{1}^{2}=\frac{12 a_{1}}{m_{H}} \tag{I}
\end{equation*}
$$

The E-class.

$$
\begin{equation*}
\varkappa_{2}=4 \pi^{2} \nu_{2 a b}^{2}=\frac{24 a_{2}}{m_{H}} \tag{II}
\end{equation*}
$$

The T_{2}-class.

$$
\begin{align*}
& \left|\begin{array}{cc}
2 a_{3}-\frac{m_{H} m_{C}}{2 M\left(C H_{4}\right)} \varkappa & a_{4} \\
a_{4} & 2 a_{5}-\frac{m_{H}}{4} \varkappa
\end{array}\right|=0 \tag{III}\\
& \text { Roots }: \varkappa_{3}=4 \pi^{2} \nu_{3 a b c}^{2} ;
\end{align*} \varkappa_{4}=4 \pi^{2} v_{4 a b c}^{2} .
$$

2. $\mathrm{CH}_{3} \mathrm{D}$ and CHD_{3}. (Point group \boldsymbol{C}_{3}).

Trying to find the relations desired we should first take into consideration the fact that the number of vibrations with different frequencies (6) is another than for methane (4). The classification of the vibrations also becomes different as seen by table II, giving the characters of the normal modes.

In $\mathrm{CH}_{3} D$ the deuterium atom is placed in the 1-position (fig. 1).
As appears from table II, nine symmetry coordinates are to be defined. This, of course, could be done by simply starting afresh as was done in the case of CH_{4} and $C D_{4}$. But as methane and deuterated methanes are isotopic molecules, they all

Table II.

Covering operations	E	$2 C_{3}$	$3 \sigma_{v}$	Number of modes	Degree of degeneracy
Symmetry classes:					
A_{1}	1	1	1	3	1
E_{1}	2	-1	0	3	2
Symmetry elements especially studied:		$C_{3}^{\prime \prime}$	$\sigma_{\text {I }}$		

have the same vibrational potential function, i. e. the one written on page 12. This means that calculations are highly facilitated if the symmetry coordinates $U_{1}, U_{2}, \cdots, U_{9}$ of the $C H_{3} D$ and CHD_{3} molecules could be formulated as functions of the coordinates $S_{1}, S_{2}, \cdots, S_{9}$. In trying to do this we define that U_{1}, U_{2}, and U_{3} should be the symmetry coordinates of the A_{1}-class and the rest of the U 's should represent the E_{1}-class.

$$
\text { Symmetry coordinates of the } A_{1} \text {-class. }
$$

It is immediately seen that we could put $U_{1}=S_{1}$. - By considering the survey of the symmetry properties of the coordinates $S_{4}, S_{5}, \cdots, S_{9}$ given at page 12 , it is soon recognized that we can choose

$$
\begin{aligned}
& U_{2}=S_{4}+S_{5}+S_{6} \\
& U_{3}=S_{7}+S_{8}+S_{9} .
\end{aligned}
$$

Symmetry coordinates of the E_{1}-class.
These coordinates constitute three pairs. According to table II one member of a pair must be symmetrical $(+)$, the other antisymmetrical (-) with respect to the symmetry element σ_{I}. We therefore arrange the coordinates $S_{2}, S_{3}, \cdots, S_{9}$ in the following way:

$(+)$ coordinates:	S_{2}	S_{4}	S_{7}	$\left(S_{5}+S_{6}\right)$	$\left(S_{8}+S_{9}\right)$
$(-)$ coordinates:	S_{3}			$\left(S_{5}-S_{6}\right)$	$\left(S_{8}-S_{9}\right)$.

Taking into account the transformation properties of S_{2} and S_{3} given at page 10 we find that one pair of degenerate symmetry coordinates are

$$
U_{4}=S_{2} \text { and } U_{5}=S_{3}
$$

Trying to find the two other pairs we find that a good proposal seems, at a first glance, to be the pair

$$
S_{5}+S_{6} \text { and } S_{5}-S_{6}
$$

By the operation C_{3}^{p}, however, $S_{5}+S_{6} \rightarrow S_{4}+S_{5}$. This shows that somehow S_{4} must enter. Let us try to put $U_{6}=f S_{4}+\left(S_{5}+S_{6}\right)$. U_{6} must be orthogonal to the other U 's, of which only $U_{2}=$ $S_{4}+S_{5}+S_{6}$ comes into consideration (all the other U 's do not depend upon S_{4}, S_{5}, or S_{6}). The demand for orthogonality gives $f=-2 . U_{6}=-2 S_{4}+\left(S_{5}+S_{6}\right)$. Let U_{7} be the symmetry coordinate which constitutes a pair together with U_{6}. We try, of course, to put $U_{7}=S_{5}-S_{6}$. The necessary conditions, that U_{7} should be orthogonal to U_{2} and U_{6}, are seen to be fulfilled. It only remains to show that the requirement of table II concerning the covering operation C_{3}^{P} is satisfied. We have

$$
\begin{array}{rlr}
U_{6}=-2 S_{4}+S_{5}+S_{6} & U_{6}^{\prime}=-2 S_{6}+S_{4}+S_{5} \\
U_{7}= & S_{5}-S_{6} & U_{7}^{\prime}=
\end{array} S_{4}-S_{5} .
$$

This gives

$$
\begin{aligned}
U_{6}^{\prime} & =-\frac{1}{2} U_{6}+\frac{3}{2} U_{7} \\
U_{7}^{\prime} & =-\frac{1}{2} U_{6}-\frac{1}{2} U_{7}
\end{aligned}
$$

that is, the character is -1 in accordance with table II.

$$
\text { In the same way we find } \left.\begin{array}{rl}
U_{8} & =-2 S_{7}+\left(S_{8}+S_{9}\right) \\
& U_{9}
\end{array}\right)
$$

Being in possession of the connexion between the U 's and the S 's we can easily set up the equations of movement a.s.o. The results are:
\square
\sum_{0}^{E}

$$
\begin{aligned}
& \text { The } A_{1} \text {-class. } \\
& \qquad \begin{array}{c}
2 a-\frac{m_{C}\left(3 m_{H}+m_{D}\right)+8 m_{H}\left(m_{H}+m_{D}\right)}{24 M\left(\mathrm{CH}_{3} \mathrm{D}\right)} \\
\frac{\left(m_{H}-m_{D}\right) m_{C}}{24 M\left(C H_{3} D\right)} \\
\frac{M\left(C H_{4}\right)\left(m_{D}-m_{H}\right)}{24 M\left(C H_{3} D\right)}
\end{array}
\end{aligned}
$$

Roots: $\varkappa_{1}, \varkappa_{3 c}, \varkappa_{4 c}$.

3. $\mathrm{CH}_{2} \boldsymbol{D}_{2}$. (Point group $\mathrm{C}_{2 \mathrm{v}}$).

The characters of the vibrations are given in table III. The symmetry element $\sigma_{I I}$ is the plane through $H(2)-C-H(4)$. The deuterium atoms are placed in the 2 and 4 positions (fig. 1).

Table III.

Covering operations	E	C_{2}	σ_{v}	σ_{d}	Number of modes	Degree of degeneracy
Symmetry classes:						
A_{1}	1	1	1	1	4	1
A_{2}	1	1	-1	-1	1	1
B_{1}	1	-1	1	-1	2	1
B_{2}	1	-1	-1	1	2	1
Symmetry elements especially studied:		C_{2}^{y}	σ_{1}	$\sigma_{\text {II }}$		

By a rotation af 180° round the y-axis (symmetry element C_{2}^{y}).

$x_{0} \rightarrow-x_{0}$	$y_{0} \rightarrow y_{0}$	$z_{0} \rightarrow-z_{0}$
$x_{1} \rightarrow-x_{3}$	$y_{1} \rightarrow y_{3}$	$z_{1} \rightarrow-z_{3}$
$x_{2} \rightarrow-x_{4}$	$y_{2} \rightarrow y_{4}$	$z_{2} \rightarrow-z_{4}$
$x_{3} \rightarrow-x_{1}$	$y_{3} \rightarrow y_{1}$	$z_{3} \rightarrow-z_{1}$
$x_{4} \rightarrow-x_{2}$	$y_{4} \rightarrow y_{2}$	$z_{4} \rightarrow-z_{2}$

By a reflexion in the plane $\sigma_{I I}$

$$
\begin{array}{lll}
x_{0} \rightarrow-z_{0} & y_{0} \rightarrow y_{0} & z_{0} \rightarrow-x_{0} \\
x_{1} \rightarrow-z_{3} & y_{1} \rightarrow y_{3} & z_{1} \rightarrow-x_{3} \\
x_{2} \rightarrow-z_{2} & y_{2} \rightarrow y_{2} & z_{2} \rightarrow-x_{2} \\
x_{3} \rightarrow-z_{1} & y_{3} \rightarrow y_{1} & z_{3} \rightarrow-x_{1} \\
x_{4} \rightarrow-z_{4} & y_{4} \rightarrow y_{4} & z_{4} \rightarrow-x_{4}
\end{array}
$$

By means of these relations we are able to find out how the previously used symmetry coordinates $S_{1}, S_{2}, \cdots, S_{9}$ vary during the symmetry operations C_{2}^{y}, σ_{I} and σ_{II}, the results being recorded at the top of page 18.

If the symmetry coordinates of the A_{1}-class in table III are denoted by R_{1}, R_{2}, R_{3} and R_{4}, we immediately find

$$
R_{1}=S_{1} . \quad R_{2}=S_{2} . \quad R_{3}=S_{4} . \quad R_{4}=S_{7}
$$

Coordinate	Operation	C_{2}^{y}	${ }^{\sigma}$ I	${ }^{\sigma}$ II
S_{1}^{\prime}		S_{1}	S_{1}	S_{1}
S_{2}^{\prime}		S_{2}	S_{2}	S_{2}
S_{3}^{\prime}		S_{3}	$-S_{3}$	$-S_{3}$
S_{4}^{\prime}		S_{4}	S_{4}	S_{4}
S_{5}^{\prime}		$-S_{5}$	S_{6}	$-S_{6}$
S_{6}^{\prime}		$-S_{6}$	S_{5}	$-S_{5}$
S_{7}^{\prime}		S_{7}	S_{7}	S_{7}
S_{8}^{\prime}		$-S_{8}$	S_{9}	$-S_{9}$
S_{9}^{\prime}		$-S_{9}$	- S_{8}	$-S_{8}$

If the symmetry coordinate of the A_{2}-class is called R_{5}, then

$$
R_{5}=S_{3}
$$

The symmetry coordinates of the B_{1}-class become

$$
R_{6}=S_{5}+S_{6} . \quad R_{7}=S_{8}+S_{9}
$$

The symmetry coordinates of the B_{2}-class similarly are

$$
R_{8}=S_{5}-S_{6} . \quad R_{9}=S_{8}-S_{9}
$$

The relation between vibration frequencies and force constants in the symmetry classes A_{2}, B_{1}, and B_{2} are:

The A_{2}-class.

$$
\begin{equation*}
\varkappa_{2 a}=4 \pi^{2} \nu_{2 a}^{2}=12 a_{2} \frac{m_{H}+m_{D}}{m_{H} m_{D}} \tag{VI}
\end{equation*}
$$

The B_{1}-class.

$$
\begin{aligned}
& \frac{2}{3} a_{5}-\frac{8 m_{H} m_{D}+m_{C}\left(m_{H}+m_{D}\right)}{m_{H} m_{D} m_{C} N_{2}} \varkappa \quad a_{4}+3 \frac{m_{H}-m_{D}}{m_{H} m_{D} N_{2}} \varkappa \\
& a_{4}+3 \frac{m_{H}-m_{D}}{m_{H} m_{D} N_{2}} \varkappa \quad 6 a_{3}-9 \frac{m_{H}+3 m_{I)}}{m_{H} m_{D} N_{2}} \varkappa \\
& N_{2}=\frac{6}{m_{H}^{2} m_{D}^{2} m_{C}}\left(m_{C} m_{D}^{2}+4 m_{D} m_{H}^{2}+3 m_{C} m_{H} m_{D}+12 m_{H} m_{D}^{2}\right) \text {. } \\
& \text { Roots: } \chi_{3 a}, \chi_{4 a} \text {. }
\end{aligned}
$$

The B_{2}-class.

$$
\begin{array}{rr}
\frac{1}{27} a_{5}-6 \frac{8 m_{H} m_{D}+m_{C}\left(m_{H}+m_{D}\right)}{m_{H} m_{D} m_{C} N_{3}} \varkappa & -\frac{1}{18} a_{4}+18 \frac{m_{H}-m_{D}}{m_{H} m_{D} N_{3}} \varkappa \\
-\frac{1}{18} a_{4}+18 \frac{m_{H}-m_{D}}{m_{H} m_{D} N_{3}} \varkappa & \frac{1}{3} a_{3}-54 \frac{m_{D}+3 m_{H}}{m_{H} m_{D} N_{3}} \varkappa \tag{VIII}\\
N_{3}=\frac{648}{m_{H}^{2} \frac{m_{D}^{2} m_{C}}{}\left(4 m_{H} m_{D}^{2}+3 m_{H} m_{D} m_{C}+12 m_{D} m_{H}^{2}+m_{C} m_{H}^{2}\right) .}=0
\end{array}
$$

Roots: $\varkappa_{3}, \varkappa_{4 c}$.

V. Numerical Calculation of the Force Constants of the Potential Function.

This calculation we shall carry through by utilizing vibration frequencies from the spectra of CH_{4} and CD_{4}. Afterwards we shall pass on to precalculating the vibration frequencies of the partly deuterated methanes, everywhere comparing calculated and experimentally observed frequencies.

The Raman spectrum of gaseous CH_{4} has been taken by Dickinson, Dillon, and Rasetti ${ }^{1}$ and by Bhagavantam, ${ }^{2}$ the latter taking depolarisation measurements. The Raman spectrum of $C D_{4}$ has been reported by McWood and Urey. ${ }^{3}$ The infrared absorption spectrum of methane was studied by Vedder and Mecke, ${ }^{4}$ by Benedict, Morikawa, Barnes, and Taylor ${ }^{5}$ and by Nath. ${ }^{6}$ Infrared absorption of $C D_{4}$ seems to have been studied by Benedict, Morikawa, Barnes, and Taylor. ${ }^{5}$ As the best available experimental material is chosen:

	CH_{4}	$C D_{4}$
ν_{1}	$2915 \mathrm{~cm}^{-1}$	$2085 \mathrm{~cm}^{-1}$
$\nu_{2 a b}$	$1530-$	
$\nu_{3 a b c}$	$3020-$	$2258-$
$\nu_{4 a b c}$	$1320-$	$988-$

${ }_{2}^{1}$ Dickinson, Dillon, and Rasetti, Phys. Rev. 34, 582 (1929).
${ }^{2}$ Bhagavantam, Ind. Jour. Phys. 6, 595 (1931).
${ }^{3}$ McWood and Urey, J. Chem. Phys. 3, 650 (1935); 4, 402 (1936).
${ }^{4}$ Vedder and Mecke. Zeits. f. Physik 86, 137 (1933).
${ }^{5}$ Benedict, Morikawa, Barnes, and Taylor, J. Chem. Phys. 5, 1 (1937).
${ }^{6}$ Nath, Ind. Jour. Phys. S, 581 (1932).

For further details of experimental values see table IV below.
In equation (I) page 13 we substitute $\nu_{1}\left(C H_{4}\right)=2915 \mathrm{~cm}^{-1}$ and get:

$$
a_{1}=4.175 \cdot 10^{4} \text { dyne } \mathrm{cm}^{-1}
$$

Subsequently we are able to precalculate $\nu_{1}\left(C D_{4}\right)=2068 \mathrm{~cm}^{-1}$. Experimentally $\nu_{1}\left(C D_{4}\right)=2085 \mathrm{~cm}^{-1}$.

In equation (II) page $13 v_{2 a b}\left(\mathrm{CH}_{4}\right)=1530 \mathrm{~cm}^{-1}$ is substituted. This gives

$$
a_{2}=0.5751 \cdot 10^{4} \text { dyne } \mathrm{cm}^{-1}
$$

This permits calculating $\nu_{2 a b}\left(C D_{4}\right)=1085 \mathrm{~cm}^{-1}$, which has not yet been observed. (Only $2 \nu_{a b}=2108 \mathrm{~cm}^{-1}$ has been observed. Hence $\left.\nu_{2 a b}\left(C D_{4}\right)=1054\right)$.

Equation (III) page 13 in connexion with the observed frequencies 3020 and $1320 \mathrm{~cm}^{-1}$ from the CH_{4}-spectrum and 2258 and $988 \mathrm{~cm}^{-1}$ from the $C D_{4}$-spectrum gives

$$
\begin{gathered}
a_{3}=5.354 \cdot 10^{4} \text { dyne } \mathrm{cm}^{-1} ; \quad a_{4}= \pm 6.590 \cdot 10^{4} \text { dyne } \mathrm{cm}^{-1} ; \\
a_{5}=4.430 \cdot 10^{4} \text { dyne } \mathrm{cm}^{-1} .
\end{gathered}
$$

To solve the problem of the unknown sign of a_{4} we pass on to regard the spectra of $\mathrm{CH}_{3} D$. Assuming $a_{4} \gtrless 0$ we calculate for the vibrations of the A_{1}-class:

$a_{4}>0$	$a_{4}<0$	Exp. determined values
$1040 \mathrm{~cm}^{-1}$	$1307 \mathrm{~cm}^{-1}$	$1306.8 \mathrm{~cm}^{-1}$
$2712-$	$2204-$	2205
3005	2947	2983

This definitely shows that $a_{4}<0$, a result which is fully confirmed by all other calculations involving a_{4}.

VI. Comparison between Calculated Frequencies and Experimentally Determined Ones.

In table IV a a survey is taken of the experimental results obtained by studying the Raman spectra of methane and deuterated methanes. Table IV b is a corresponding survey of infrared absorption data. In table V experimentally determined frequencies are stated against calculated ones.

Table IVa.
Experimentally determined Raman frequencies of methane and deuterated methanes.

The frequencies in square brackets have only been found as first over-tones.

A discrepancy between table IV a and IV b is seen in the interpretation of the spectra of $\mathrm{CH}_{3} \mathrm{D}$. The calculation on page 20 above together with the calculations of Dennison and Johnson ${ }^{1}$ support the view that the interpretation of the infrared data given by Ginsburg and Barker is the more correct one.-For reasons to be given below it seems as if the $\nu_{4 a}$-frequency in the Raman spectrum of $\mathrm{CH}_{2} \mathrm{D}_{2}$ should be interchanged with the $\nu_{4} b$ or $v_{4 c}$ frequency. - The marks of interrogation in table IV b indicate that the interpretation given is doubtful.

The infrared data of $\mathrm{CH}_{2} D_{2}$ found by Barker and Ginsburg ${ }^{2}$,

[^3]Table IVb.
Experimentally determined infrared vibration frequencies of methane and deuterated methanes.

	CH_{4}	$\mathrm{CH}_{3} \mathrm{D}$	$\mathrm{CH}_{2} \mathrm{D}_{2}$	CHD_{3}	$C D_{4}$
ν_{1}	2915	2983	-	-	-
$\nu_{2 a}$	1530	1477	-	-	-
$\nu_{2 b}$			1450		
$\nu_{3 a}$	3020	3031	2255 ?	2260	2258
$\nu_{3 b}$?		
$\nu_{3 c}$		2205	3020 ?	3000	
$\nu_{4}{ }_{a}$	1320	1156.3	1235?	988	988
$\nu_{4}{ }_{b}$			1035 ?		
$\nu_{4 c}$		1306.8	1035 ?	988	
	Vedder and Mecke, Zeits. f. Phys. 86, 137 (1933).	Ginsburg and Barker, J. Chem. Phys. 3, 668 (1935).	Benedict, Morikawa, Barnes, Taylor, J. Chem. Phys. 5, 1 (1937)		

Benedict et al. ${ }^{1}$ unfortunately are published in a manner so as to make the assignment of frequencies doubtful. In referring to vibration frequencies of methane and the isotopic molecules two systems have been used: the system of Rosenthal, denoting frequencies by $\nu_{1}, \nu_{2 a}$ a.s. o., and, in the case of $\mathrm{CH}_{2} \mathrm{D}_{2}$, the system of Dennison, where the frequencies are denoted in accordance with the way in which the electrical moment varies during the vibration, ' M ', ' L ', or ' G ' being put before or after the frequency figures. Unfortunately none of these systems was employed in the papers of Barker and Benedict.-Another circumstance contributing to the confusion as regards the $\mathrm{CH}_{2} \mathrm{D}_{2}$ spectrum lies in the fact that undoubtedly the early precalculation of frequencies made by Dennison has played a more dominant rôle than has purely experimental studies (fine struc-

[^4]ture of the single bands a.s. o.) by the assignment of frequencies. It seems, however, as if some sort of mistake has got into the paper of Dennison and Johnson. As mentioned the vibrations are classified as ' M ', ' L ', or ' G ' vibrations, this being convenient, because the $\mathrm{CH}_{2} \mathrm{D}_{2}$ molecule has three unequal moments of inertia. The axis about which the moment of inertia is the least, is denoted by ' L ', the axis of middle moment of inertia by ' M ' and the axis of greatest moment of inertia by ' G '. A vibration by which the electrical moment varies along the ' L ' axis, is called an ' L ' vibration a. s. o.-In their paper Dennison and Johnson state that
\[

$$
\begin{aligned}
& \text { ' } L \text { '-frequencies should be at } 3013 \text { and } 1082 \mathrm{~cm}^{-1} \text {. } \\
& \text { ' } G \text { '- } \quad-\quad-\quad-\quad 2227 \text { and } 1228-
\end{aligned}
$$
\]

It is easy to show that ' L '-frequencies are the frequencies of the B_{2}-class (here denoted by $\nu_{3 c}$ and $\nu_{4 c}$), while the ' G '-frequencies are the frequencies of the B_{1}-class (here denoted by $\nu_{3 \alpha}$ and $\nu_{4 \alpha}$). By the precalculation of $\mathrm{CH}_{2} \mathrm{D}_{2}$-frequencies made in this paper, it is found that

$$
\begin{aligned}
& \text { ' } L \text { '-frequencies should be at } 2258 \text { and } 1230 \mathrm{~cm}^{-1} \text {. } \\
& \text { ' } G \text { '- } \quad-\quad-\quad-3021-1093-
\end{aligned}
$$

Fig. 5 a shows the $\mathrm{CH}_{2} D_{2}$ molecule in the M, L, G coordinate system, figs. 5 b and 5 c show a ' G ' and an ' L ' vibration.

As will be seen we must expect to find a hydrogen 'valence' vibration among the ' G '-vibrations, that is, one of the ' G '-vibrations should be located in the neighbourhood of $3000 \mathrm{~cm}^{-1}$. Similarly a deuterium 'valence' vibration must be among the ' L 'vibrations, that is, one of the ' L ' vibrations must be near $2200 \mathrm{~cm}^{-1}$. These facts are reproduced best by the calculation made in this paper, while Dennison and Johnson, in their paper, come to the opposite conclusion.

In table V theoretically computed and experimentally found frequency values are compared. By the assignment of frequencies of the $\mathrm{CH}_{2} \mathrm{D}_{2}$-spectrum, one has been chosen which is consistent with the frequency values calculated here.

Table V.

${ }^{1}$ McWood and Urey, loc. cit.
${ }^{2}$ Barker and Ginsburg, loc. cit.

VII. Physical Significance of the Results Obtained.

In order to be able to give an account of the above results in a lucid form-which will, at the same time, enable us to make comparisons between methane and other molecules-it is necessary to study the intramolecular forces in some perspicuous cases. In what follows two cases of special simplicity will be examined.

Case 1.

In this case the carbon atom and $H(1)$ are thought to be bound to their equilibrium positions by some imaginary forces. H (2), $H(3)$, and $H(4)$ are given the same displacement along the direction carbon-hydrogen. The situation is illustrated in fig 6.

Fig. 6.
The displacements have been chosen so that

$x_{0}=0$	$y_{0}=0$	$z_{0}=0$			
$x_{1}=0$	$y_{1}=0$	$z_{1}=0$	$S_{1}=9$	$S_{4}=-1$	$S_{7}=2$
$x_{2}=-1$	$y_{2}=-1$	$z_{2}=1$	$S_{2}=0$	$S_{5}=-1$	$S_{8}=2$
$x_{3}=-1$	$y_{3}=1$	$z_{3}=-1$	$S_{3}=0$	$S_{6}=-1$	$S_{9}=2$

$x_{4}=1 \quad y_{4}=-1 \quad z_{4}=-1$
The force acting upon hydrogen atom no. j in the direction of the X-axis (fig. 1) being denoted as $K_{I I(j)}(X)$ it is easily shown that
$K_{H(1)}(X)=-9 a_{1}+a_{3}-2 a_{4}+4 a_{5}=K_{H(1)}(Y)=K_{H(1)}(Z)$.
$K_{H(2)}(X)=9 a_{1}+a_{3}-a_{4}=K_{H(2)}(Y)$.
$K_{H(2)}(Z)=-9 a_{1}+a_{3}-4_{a_{5}}$
$K_{C}(X)=4\left(a_{4}-a_{3}\right)=K_{C}(Y)=K_{C}(Z)$.
In units of 10^{4} dyne cm^{-1} the values of the constants are
$a_{1}=4.175 \quad a_{2}=0.5751 \quad a_{3}=5.354 \quad a_{4}=-6.590 \quad a_{5}=4.430$.
By insertion of these values we get

$$
K_{H(1)}(X)=-1.321=K_{H(1)}(Y)=K_{H(1)}(Z)
$$

By $K_{H(1)}$ we denote the resulting force acting upon H (1). Consequently

$$
\begin{aligned}
& K_{H(1)}=+1.321 V 3=2.288 \\
& K_{H(2)}=82.14 \\
& K_{C}=79.29
\end{aligned}
$$

The calculation shows that the movements of the hydrogen atoms along the direction carbon-hydrogen take place approximately independently of each other.

Case 2.

As appears from fig. $7 H(1)$ is displaced perpendicularly to the C - H (1)-direction. All the other atoms are kept in their equilibrium positions. For this displacement $x_{1}=z_{1}=1 . y_{1}=-2$. $S_{1}=S_{3}=0 \quad S_{2}=-6 . S_{4}=S_{7}=-2 \quad S_{5}=S_{6}=S_{7}=S_{8}=1$.

$K_{H(1)}(X)=-6 a_{2}-a_{3}-a_{4}-a_{5}$	$K_{H(1)}(Y)=12 a_{2}+2 a_{3}+2 a_{4}+2 a_{5}$		
$K_{H(2)}(X)=6 a_{2}-a_{3}-2 a_{4}-3 a_{5}$	$K_{H(2)}(Y)=-12 a_{2}+2 a_{3}+a_{4}$		
$K_{H(3)}(X)=6 a_{2}-a_{3}+a_{4}+3 a_{5}$	$K_{H(3)}(Y)=12 a_{2}+2 a_{3}-2 a_{5}$		
$K_{H(4)}(X)=-6 a_{2}-a_{3}+a_{5}$	$K_{H(4)}(Y)=-12 a_{2}+2 a_{3}+a_{4}$		
$K_{C}(X)=$	$4 a_{3}+2 a_{4}$	$K_{C}(Y)=$	$-8 a_{3}-4 a_{4}$

$$
\begin{aligned}
K_{H(1)}(Z) & =-6 a_{2}-a_{3}-a_{4}-a_{5} \\
K_{H(2)}(Z) & =-6 a_{2}-a_{3}+a_{5} \\
K_{H(3)}(Z) & =6 a_{2}-a_{3}+a_{4}+3 a_{5} \\
K_{H(4)}(Z) & =6 a_{2}-a_{3}-2 a_{4}-3 a_{5} \\
K_{C}(Z) & =4 a_{3}+2 a_{4}
\end{aligned}
$$

By substitution of numerical values we find
$K_{H(1)}=16.27 . \quad K_{H(2)}=5.55 . \quad K_{H(3)}=11.0 . \quad K_{H(4)}=5.55 . \quad K_{C}=20.18$.
Movements of the hydrogen atoms perpendicular to the car-bon-hydrogen bond could not be considered as being independent of each other.

At the present stage the study of general quadratic potential functions of polyatomic molecules is hardly possible because of the great number of constants involved in the potential function. At present it seems impossible to avoid the use of empirical rules stated with certainty in the case of simple molecules. Such rules would give some relations between the (theoretically independent) force constants. Let us e. g. consider the rule

Fig. 7.
stated in Case 1 for methane. If a more general validity of this rule could be secured, it would be a great help, e. g. in the study of the ethane molecule. It seems natural to assume, however, that deviations from the above rule are more likely to occur in dealing with molecules possessing an electronic structure essentially different from the electronic structure of methane. Here the acetylene molecule represents a good test example. In the following chapter a brief treatment of the acetylene molecule is given. The result is that the validity of the rule, stated in Case 1 for methane, is shown in the case of acetylene, too. The writer hopes to be able to demonstrate the use of this and similar valuable empirical rules in future work.

VIII. Brief Treatment of the Acetylene Molecule.

The distribution of the vibrations of $\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{C}_{2} D_{2}$ (point group $D_{\infty / 2}$) has been given by Glogkler and Morrel.. ${ }^{1}$

Table VI.

Class	Sym.	Antisym.	Number of frequencies	Degree of degeneracy	Vibration frequencies
$A_{1} \ldots \ldots \ldots \ldots$	$C_{\infty}, \sigma_{v}, i$		2	1	$\nu_{1} \nu_{2}$
$A_{2} \ldots \ldots \ldots$	C_{∞}, σ_{v},	i	1	1	ν_{3}
$B_{1} \ldots \ldots \ldots$	σ_{v}, i	C_{∞}	1	2	$\nu_{4,5}$
$B_{2} \ldots \ldots \ldots$	σ_{v}	C_{∞}, i	1	2	$\nu_{6,7}$

Corresponding to the frequency denotation the symmetry coordinates are defined as follows:

$$
\begin{aligned}
& S_{1}=x_{0}-x_{1} . \\
& S_{2}=x_{2}-x_{3} . \\
& S_{3}=x_{0}+x_{1}-x_{2}-x_{3} . \\
& S_{4}=\frac{r}{R}\left(y_{0}-y_{1}\right)-y_{2}+y_{3} . \\
& S_{5}=\frac{r}{R}\left(-z_{0}+z_{1}\right)+z_{2}-z_{3} . \\
& S_{6}=y_{0}+y_{1}-y_{2}-y_{3} . \\
& S_{7}=z_{0}+z_{1}-z_{2}-z_{3} .
\end{aligned}
$$

the acetylene molecule being placed in the coordinate system as demonstrated in fig. 8.

Fig. 8.

[^5]
Relations between force-constants and vibration frequencies.

The potential contribution of the A_{1}-class is formulated as

$$
\Delta 2 V=a_{1} S_{1}^{2}+a_{2} S_{2}^{2}+a_{3} S_{1} S_{2}
$$

Consequently the secular equation becomes

$$
\left|\begin{array}{cc}
2 a_{1}-m_{C} \varkappa & a_{3} \tag{1}\\
a_{3} & 2 a_{2}-m_{H} \varkappa
\end{array}\right|=0
$$

Roots: χ_{1} and χ_{2}.
The A_{2}-class.

$$
\begin{equation*}
A 2 V=a_{4} S_{3}^{2} . \quad a_{4}=\frac{m_{C} m_{H}}{2\left(m_{H}+m_{C}\right)} \iota_{3} . \tag{2}
\end{equation*}
$$

The B_{1}-class.

$$
\begin{equation*}
\Lambda 2 V=a_{5}\left(S_{4}^{2}+S_{5}^{2}\right) . \quad a_{5}=\frac{m_{H I} m_{C}}{2\left(m_{C}+m_{H}\left(\frac{r}{R}\right)^{2}\right)} \kappa_{4,5} . \tag{3}
\end{equation*}
$$

The B-class.

$$
\begin{equation*}
\nrightarrow 2 \mathrm{~V}=a_{6}\left(S_{6}^{2}+S_{7}^{2}\right) \cdot a_{6}=\frac{m_{H} m_{C}}{2\left(m_{H}+m_{C}\right)} x_{6,7} . \tag{4}
\end{equation*}
$$

The numerical values of the above-mentioned force constants will now be calculated on the basis of data from Raman and infrared spectra of $C_{2} H_{2}$ and $C_{2} D_{2}$. A good survey of the experimental material available is given by Stitт. ${ }^{1}$ Beneath the experimentally determined vibration frequencies are stated.

$$
C_{2} H_{2} .
$$

$\nu_{1}=1974$ Bhagavantam and Rao, Proc. Ind. Acad. Sci. 3 A, 135 (1936) (R).
Glockler and Morrell, J. Chem. Phys. 4, 15 (1936) (I).
$\nu_{2}=3372$ The same references as for ν_{1}.
$\left.\begin{array}{l}\nu_{3}=3288 \\ \nu_{6,7}=730\end{array}\right\}$ Levin and Meyer, J. Opt. Soc. Am. 16, 137 (1928) (I).
$\nu_{4,5}=612$ Mecke and Ziegler, Zeits. f. Phys. 101, 405 (1936) (I).

$$
C_{2} D_{2} .
$$

$\left.\begin{array}{rl}\begin{array}{l}y_{1}\end{array}=1762 \\ y_{2} & =2700 \\ y_{3} & =2428 \\ y_{6,7} & =539 \\ y_{4,5} & =506\end{array}\right\}$ Fred Stitt, J. Chem. Phys. 8, $56(1940)(I)$.

Calculation of the force-constants and their physical significance.

By means of (1), (2), (3), and (4) we find:

$$
a_{1}=19.15 \cdot 10^{5} . \quad a_{2}=2.893 \cdot 10^{5} . \quad a_{3}= \pm 6.075 \cdot 10^{5}
$$

$$
a_{4}=2.938 \cdot 10^{5} . \quad a_{5}=0.6730 \cdot 10^{4} . \quad a_{6}=1.448 \cdot 10^{4} \text { dyne } \mathrm{cm}^{-1}
$$

To check the correctness of these numerical values we shall precalculate the vibrations frequencies of the $C_{2} H D$-molecule.

The vibrations of this molecule are distributed on two sym-metry-classes, one class of linear vibrations and another of nonlinear ones. The secular equation for the linear vibrations is

$$
\begin{array}{ccc}
2 a_{1}-m_{C} \nsim & a_{3} & 0 \\
a_{3} & 2 a_{2}-\frac{\left(m_{H}+m_{D}\right) m_{C}+2 m_{\mathrm{H}} m_{D}}{M\left(C_{2} H D\right)} \varkappa & \frac{\left(m_{H}-m_{D}\right) m_{C}}{M\left(C_{2} H D\right)} \varkappa \tag{5}\\
0 & \frac{\left(m_{H}-m_{D}\right) m_{C}}{M\left(C_{2} H D\right)} \varkappa & 2 a_{4}-\frac{\left(m_{H}+m_{D}\right) m_{C}}{M\left(C_{2} H D\right)} \varkappa
\end{array}
$$

For the non-linear vibrations I have only evaluated

$$
\begin{aligned}
& \dot{S}_{4}=\left(\frac{m_{H}+m_{D}}{2 m_{H} m_{D}}+\left(\frac{r}{R}\right)^{2} \frac{1}{m_{C}}\right) \frac{\partial 2 T}{\partial \dot{S}_{4}}+\frac{m_{D}-m_{H}}{2 m_{H} m_{D}} \frac{\partial 2 T}{\partial \dot{S}_{6}} \\
& \dot{S}_{6}=\frac{m_{\|}-m_{H}}{2 m_{H} m_{D}} \frac{\partial 2 T}{\partial \dot{S}_{4}}+\left(\frac{1}{m_{C}}+\frac{1}{2 m_{H}}+\frac{1}{2 m_{D}}\right) \frac{\partial 2 T}{\partial \dot{S}_{6}}
\end{aligned}
$$

in explicit form, omitting to write down the secular equation explicitly.

$C_{2} H_{2}$		$C_{2} H D$		$C_{2} D_{2}$	
Calculated	Observed	Calculated	Observed	Calculated	Observed
1985	1974	1851	1851	1747	1762
	3372	3332	3340	2710	2700
3288	3288	2576	2560	2420	2428
730	730	674	679	537	539
612	612	518	523	512	506

The table at the bottom of page 31 shows the result of precalculating the complete vibration spectra of $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{HD}$, and $C_{2} D_{2}$, using the numerical values of the force constants just given. As will be seen from (5) the spectrum of $C_{2} D H$ does not help us to find the correct sign of a_{3}, as only a_{3}^{2} enters.

Having thus demonstrated the correctness of the force-constants we proceed to study the intramolecular forces. $H(3)$ is displaced from its equilibrium position as shown in fig. 9.

Fig. 9.
We choose $x_{3}=-1$ and get $S_{1}=S_{4}=S_{5}=S_{6}=S_{7}=0$, $S_{2}=S_{3}=1$.

By means of the usual procedure we find

$$
\begin{aligned}
K_{C(0)}=-\frac{1}{2} a_{3}-a_{4} ; \quad K_{C(1)} & =\frac{1}{2} a_{3}-a_{4} ; \quad K_{I I(2)}=-a_{2}+a_{4} \\
K_{H(3)} & =a_{2}+a_{4}
\end{aligned}
$$

Substituting the numerical values for the force-constants we get

	$a_{3}<0$	$a_{3}>0$
$K_{C(0)} \ldots \ldots$.	0.0989	-5.9761
$K_{C(1)} \ldots \ldots \ldots$	-5.9761	0.0989
$K_{H(2)} \ldots \ldots \ldots$	0.0455	0.0455
$K_{H(3)} \ldots \ldots$	5.8317	5.8317

Independently of the sign of a_{3} it is seen that $K_{H(2)}: K_{H(3)}$ has about the same value as found by the corresponding displacement by methane. The two hydrogen atoms move independent-ly.-As it seems correct to assume that the force acting upon the carbon atom beside the displayed hydrogen atom, is the greater, we see that $a_{3}<0$. This means, however, that beyond the neighbour carbon atom scarcely any effect is exerted by the hydrogen atom attacked. As already mentioned this is the same rule as developed by methane, and it should be mentioned that it is also valid in the case of $H-C \equiv N$, as shown in the present writer's doctor's thesis. ${ }^{1}$
${ }^{1}$ B. Bak, Det indremolekylære Potential, Kbhvn. 1943.

IX. Summary.

(1) The equations between vibration frequencies of methane and deuterated methanes have been deduced. It is proposed that the ideas of Howard and Wilson in connexion with the grouptheoretical tables by Rosenthal should be more commonly used in solving vibrational problems.
(2) By means of vibration frequencies from the spectra of CH_{4} and CD_{4}, numerical values of 5 'harmonic' force constants have been calculated. This makes it possible to precalculate the entire spectra of all the partly deuterated methanes. The agreement between observed and calculated values as a rule is excellent.
(3) Empirical rules which might be of use in dealing with more complex molecules have been looked for, and it is shown that the displacement of a hydrogen atom towards its adjoining carbon atom produces little effect on all the other atoms of the molecule. It is demonstrated that the rule holds good, too, in the case of $\mathrm{C}_{2} \mathrm{H}_{2}$ and HCN .

Universitetets kemiske Laboratorium,
Copenhagen.

[^0]: ${ }^{1}$ J. Rosenthal, Phys. Rev. 45, 538 (1934).
 ${ }^{2}$ Dennison and Johnson, Phys. Rev. 47, 93 (1935)
 ${ }^{3}$ Barker and Ginsburg, Phys. Rev. 47, 641 (1935); J. Chem. Phys. 3, 668 (1935).
 ${ }^{4}$ Benedict, Morikawa, Barnes and Taylor, J. Chem. Phys. 5, 1 (1937).

[^1]: ${ }^{1}$ Howard and Wilson, Jr., J. Chem. Phys. 2, 630 (1934).
 ${ }^{2}$ Rosenthal and Murphy, Rev. Mod. Phys. 8, 317 (1936).

[^2]: ${ }^{1}$ J. Rosenthal, Phys. Rev. 45, 538 (1934).

[^3]: ${ }^{1}$ Dennison and Johnson, Phys. Rev. 47, 93 (1935).
 ${ }^{2}$ Barker and Ginsburg, J. Chem. Phys. 3, 668 (1935).

[^4]: ${ }^{1}$ Benedict, J. Chem. Phys. 5, 1 (1937).

[^5]: ${ }^{1}$ Glockler and Morrell, J. Chem. Phys. 4, 15 (1936).

