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THE INTRAMOLECULAR POTENTIAL 
OE METHANE

I. Introduction.
he first physicist to formulate the general quadratic vibra
tional function of Methane was Jenny Rosenthal.1 The 

complete function includes 5 constants. If the numerical values 
of these 5 constants are known, a precalculation of the vibra
tion frequencies of methane and deuterated methanes can be 
carried out.

The first calculation of all 5 constants was published by 
Dennison and Johnson.2 At that lime only insufficient experi
mental material from the vibrational analysis of Raman and 
infrared spectra was available. Hence Dennison and Johnson 
had to use data from the fine structure of the infrared bands 
of methane, this resulting in a less accurate determination of 
the constants as shown below.

Shortly afterwards Barker and Ginsburg3 published data 
from the infrared absorption spectrum of CH^D. This in con
nexion with the well-known vibration frequencies of methane 
itself enabled a first calculation of the 5 constants on a pure 
vibrational basis. However, the calculation could not be carried 
through without a certain arbitrariness. Due to the method used 
the constants calculated were sometimes real figures, sometimes 
imaginary ones.—In 1937 Benedict, Morikawa, Barnes and 
Taylor4 published their great work on the infrared spectra of 
mixtures of deuterated methanes. In their paper a forthcoming 
publication is announced where a potential function, including 
anharmonic terms, would be used. Apparently the paper has 
not yet been published.

1 J. Rosenthal, Plivs. Rev. 45, 538 (1934).
2 Dennison and Johnson, Phys. Rev. 47, 93 (1935).
3 Barker and Ginsburg, Phys. Rev. 47, 641 (1935): J. Chem. Phys. 3, 668 

(1935).
4 Benedict, Morikawa, Barnes and Taylor, J. Chem. Phys. 5, 1 (1937).

1*
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As will be seen from what precedes, it will be of importance 
to have a statement where, firstly, a survey of all the experi
mental material published is given, and, secondly, this material 
is utilized for a calculation of the 5 constants in the potential 
function of methane. The validity of the numerical values should 
be tested by precalculating the frequencies of all deuterated me
thanes. We shall here follow the programme sketched, thus for 
the first lime giving a complete survey of the correctness by 
which we can precalculate the vibration spectra of methane 
and deuterated methanes, using a quadratic potential function.

Before the calculations are started some words should be 
said of the method used for attacking the problem. In 1934 
Howard and Bright Wilson, Jr.1 demonstrated the use of a 
general normal-coordinate method, showing the convenience of 
employing the so-called ‘symmetry coordinates’. To derive full 
advantage of this paper an elementary knowledge of group theory 
is necessary. This could be acquired by consulting an article 
by Rosenthal and Murphy.2 The two papers just cited should 
be studied, if necessary, before reading the present paper.

1 Howard and Wilson, Jr., J. Chem. Phys. 2, 630 (1934).
2 Rosenthal and Murphy, Rev. Mod. Phys. 8, 317 (1936).

II. Symmetry Considerations.
The methane molecule is placed in an orthogonal xyz co

ordinate system as shown in double-projection in fig. 1.
The hydrogen atoms are placed in the positions 1, 2, 3, and 

4, the carbon atom in the zero point of the coordinate system. 
The components of the displacement of the carbon atom are de
noted by x0, y0, c0, the corresponding figures for hydrogen no. _/ 
are x., yp zp

Geometrically and CD4 belong to the point group TD. 
In table I the characters for the normal modes of vibration 
are given.

The p-axis in the C^-symbol is the line from the carbon 
atom lo //(l).—The symmetry element cq is the plane through 
7/(1) —C — H (3).—Beneath a survey is taken of the ways in
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Fig. 1.
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Table 1.

Covering Operation E 8 C3 3 C2 6 6 S4 Number of 
inodes

Degree of 
degeneracy

Symmetry class:

■ li...................................... 1 1 1 1 1 1 1
A 2.................................... 1 1 1 -1 - 1 0
E ................................ 2 -1 2 0 0 1 2

7 o........ .............................. 3 0 1 1 1 2 3
Ti................................ 3 0 -1 -1 1 0

Symmetry elements 
especially studied:. . . cC G 2 ,rl $4

which the displacement components y., Zj vary during the 
covering operations of the molecule.

By a rotation of 120° round the p-axis

Bv a reflexion in the plane o,1

By f rotation of 180° round the x-axis

æo’ æo y0-> -- y(> ~o - > — -0
æ’i i/i y 4 ~i -> — ~4
æ-2 --> a- 3 y- - y 3 "2 --> - ~ ^3
■1’3 ->■ x’2 y.3 y-2 "s -->
æ4 > x1 f/4^ ?/l ~4 - > ■ ~L

i/o .Vo
?/i Ui
U 2 U 4
?/:} y.)

y 4 y 2

'0 0

~1 æl
.r

'3
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By a ‘rotatory reflexion’ of 90° round the ¿/-axis

*0æo

*4

i/o — y o
y^~y-2
y 2 — vb

y>, — f/4

Í/4 -7i
We may now pass on to constructing the symmetry co

ordinates.

Symmetry coordinate of the 4t-class (SJ.
The vibration picture of the totally symmetrical vibration (fre

quency rt) could be drawn immediately as shown in lig. 2 (doub
le-projection).

Fig. 2.

In a somewhat loose, but shorthand formulation the ampli
tude proportions are given by

>T0 : y0: Z0’ X1 : 71 : Z1 : æ2 : 72 : Z2 : æ3 : 7.3 : z3 : æ4 : 7< : -4 = | /. \
= 0 : 0 : 0 : 1 : 1 : 1 : — 1 : — 1 : 1 : — 1 : 1 : -1 : 1 : — 1 : — 1. | 7

A ‘symmetry coordinate’ having the symmetry properties of 
the AjL-class recorded in table I, is easily seen to be

Si = æ! - x2 — x3 + aq + Pi ~ y2 + y3 - y4 + -i + -2 ~ "3 — -4-
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The conditions that <SX should be zero for translational and ro
tational movements of the molecule as a whole, are fulfilled.

Symmetry coordinates of the E-class (S2 and S3).
According to table I there is one double degenerate vibration 

in this class. Our task is to find the vibration pictures of two

Fig. 3.

mutually orthogonal vibrations, vibrating with the same fre
quency (r'oab). To find these vibration pictures one of course 
makes use of the fact that v2ab is experimentally found to be 
a so-called ‘hydrogen deformation’ frequency (r2ab ~ 1500 cm-1). 
One of these with symmetry properties as demanded by table I 
is easily drawn (fig. 3).

An arbitrarily chosen vibration of the E-class, as the one 
drawn in fig. 3, could generally be conceived as having been 
formed by a suitable superposition of the two fundamental fre
quencies v2a and v2b of the class + possibly normal vibrations 
of higher symmetry, that is, in this case the totally symme
trical vibration We first want to see if the vibration of fig. 3 
has a totally symmetrical component. Actually it has, as the 
amplitude proportions
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•r0 • J7o : ~0 : X1 • í/l • ”1 • æ2 : Í/-2 '■ Z2 : æ3 : y3 : Z3 : X4 : : ~4 | /o)
= 0:0:0;0:l:0:0:— 1 : 0 : 0 : 1 : 0 : 0 : — 1 : 0 P 7 

are not orthogonal to (1).
To find the pure E-cIass component

•ro ■ i/o • • æi • y i "1 : 'r2 '■ y2 - Z2: æ3 : ?73 : ~3 : -r4 ■ Ui' Z4 (3)

of the fig. 3 vibration, we must solve the vector equation

(1) + (3) = Å’(2).

Å’(2) stands for a vector, the components 
from (2) by multiplying each component 
ately gives the 12 equations:

of which are found 
by k. This immedi-

1 + aq — 0 i + yi = k i + 4 = o

and so on. The value of k is found by making use of the con
dition that (1) and (3) should be mutually orthogonal. We find 
k — 3 and consequently

(3) = 0:0:0:—1:2: — 1:1: — 2: — 1 :1 : 2 : 1 : — 1 : — 2 : 1.

The vibration picture becomes (fig. 4):

Fig. 4.
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Thus, having found one pure 7+class vibration we easily find 
another orthogonal to the first one. The vibrating molecule of 
fig. 4 is simply turned 120° round the /»-axis. After the rotation 
the molecule of course still vibrates with the same frequency 
as before. The amplitude proportions are

0 : 0 : 0 : 2 : — 1 : — 1 : - 2 : 1 : — 1 : — 2 : — 1 : 1 : 2 : 1 : 1. (4).

(3) and (4) do not make out a pair of normal vibrations, 
as they are not mutually orthogonal. But we must be able to 
form (4) by a superposition of (3) and the corresponding or
thogonal normal vibration (5), which means that (5) can be 
determined by the relation

(5) + (3) = fr(4).

The equation is solved as demonstrated above. The result 
is that k = —2 and

(5) = ():():(>: 3 : 0 : 3 : 3 : 0 : 3 : 3 : 0 : - 3 : - 3 : 0 : — 3.

Consequently the symmetry coordinates chosen are

52 = — aq + ,t2 + aq — .r4 — zx — z2 + z3 + "4 + 2 (z/L — y2 + z/3 — i/4)
53 -- 3 (— + aq + a-3 — a4 + z4 + z2 — z3 — z4).

Demonstrating that the coordinates above fulfil the require
ments of table 1 we have:

The coordinate Sf, having been subjected to a symmetry 
operation, is denoted by S-. By a rotation of 180° round the 
a’-axis

that is, the character (the sum of diagonal elements) is 2, con
sistent with table I.— By a rotation of 120° round the /-axis

S'2 = - 0.5 S2 + 0.5 S3
S3 = — 1.5 S2 —0.5 S3,

which means that the character is —1 as demanded by table I. 
—In an analogous manner it is shown that the characters are 
zero by the operations cq and S4.
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Symmetry coordinates of the 7>class (S4, S5, $6, S7, Ss, S9).
This class contains two triple-degenerate vibrations. Follow

ing a procedure quite analogous to the one sketched above we 
get for the three components of one of the vibrations

= 4 ,r0 + (aq + .r2 + ,r3 + ,r4)

\ = — 4 i/0 + (z/4 + i/. + Ï/3 + i/J
= - 4 z0 + (zt + -2 + z'i + "4)

The components 
are chosen as

of the second triple-degenerate vibration

Srj — .vx ;r2 + .1’3 + .q — 4- :2 + :3 z4
*^8 = ■ z\. “b ~2 ~ 3 T ~4 y 1 y2 + y 3 ~ y 4
■Sg = aq + .r2 a*3 t .v4 yi T y 2 4~ y 3 ’ y 4 •

III. Formulation of the Potential Function.
Wishing to formulate the potential as the quadratic expres

sion commonest possible we write the contribution of the vi
brations in the At-class as

/2 V = cqS2.

The contribution from the F-class is preliminarily written

J2V = a2(Sl + fSl).

The constant /’ can be determined by the condition that 42 V 
is invariant during any covering operation of the molecule. Thus 
by a rotation of 120° round the p-axis

J 2 F = a, (S2 + fSl) -> a2 [(- 0.5 S2 + 0.5 S3)2 +
+ /’(— 1.5 S2 — 0.5 S3)2] = a2 [S2 (0.25 + 2.25 f) + S| (0.25 + 0.25 /‘) + 
+ S2S3 (-0.50+ 1.50/’)].

Identity demands that /’ = 1/3.
Before formulating the potential contribution from the Jo- 

class we shortly summarize the symmetry properties of the 
coordinates.
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Operation
Coordinate

St 

 
S$ ..................................................................

s¿..................................................................
Si'.................................................................
S3'  
S9'..................................................................

s6 
Si 
s. 
sM
S7
¿>8

Ca SÏ

— S4 Si
S5 s6 Sq

-s6 S5 -S3
-S7 s7 -Si

*$8 s9 s9
-S9 *$8 S3

Remembering that only symmetry coordinates with common 
symmetry properties can form ‘mixed’ products we get

The complete quadratic potential function consequently be
comes

2 V = a1 kS’î + a2 ^S| + - + a3 (S^ + S? + S|) +

~r «4 (1S4 S7 + 1S5 S8 + -Sg S<j) + a- (S7 + S8 + <S9).

The simplicity, by which the problems have been solved 
here, should be compared with the complexity of e. g. Rosen
thal’s paper.1

J. Rosenthal, Phys. Rev. 45, 538 (1934).
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IV. Relations between Force Constants and 
Vibration Frequencies.

1. C7/( and C¿)4.
Solving the problem of finding these relation in the usual 

way by means of the Lagrangian equations a. s. o., we get:

The Ax-class.

The E'-class.
« 2 2 ^4= 4:r r2a;, =

The 7’2-class.

o mH n'c
' 2 M{CI 14) ’

«4

Hoots: z3 = 4 7r2^aZ)C;

(I)

(II)

(III).

2. CHD and CHD?>. (Point group C3p).
Trying to find the relations desired we should first take into 

consideration the fact that the number of vibrations with differ
ent frequencies (6) is another than for methane (4). The classifi
cation of the vibrations also becomes different as seen by table II, 
giving the characters of the normal modes.

In CH?)D the deuterium atom is placed in the 1-position (fig. 1).
As appears from table II, nine symmetry coordinates are to 

be defined. This, of course, could be done by simply starting 
afresh as was done in the case of CHA and CD4. But as me
thane and deuterated methanes are isotopic molecules, they all
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Table II.

Covering operations E 2 C3 3 (Tp Number of ¡ Degree of 
modes 1 degeneracy

Symmetry classes:
•h .............................. 1 1 1 3 1
St................................................. 2 - 1 0 3 2

Symmetry elements 
especiallv studied:.............

have the same vibrational potential function, i. e. the one written 
on page 12. This means that calculations are highly facilitated 
if the symmetry coordinates , U2, •••, C9 of the CH^I) and 
CHD} molecules could be formulated as functions of the coor
dinates S2, • • - , S9. In trying to do this we define that ÍZX, U2, 
and should be the symmetry coordinates of the A1-class 
and the rest of the U's should represent the Z^-class.

Symmetry coordinates of the A1-class.

It is immediately seen that we could put U1 = St.-By con
sidering the survey of the symmetry properties of the coordi
nates S4, S5, given at page 12, it is soon recognized that
we can choose

Symmetry coordinates of the E L- class.

These coordinates constitute three pairs. According to table 
II one member of a pair must be symmetrical (+), the other 
antisymmetrical (—) with respect to the symmetry element <ri. We 
therefore arrange the coordinates S2, S3, • • •, S9 in the following
way:

*4(+) coordinates : 
(—) coordinates:

(S5 + <S6) (Ss T S9)
(S5-S6) (S8-S9).
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Taking into account the transformation properties of S2 and 
S3 given at page 10 we find that one pair of degenerate symmetry 
coordinates are

u4 = *^2 and u5 = n3.

Trying to find the two other pairs we find that a good pro
posal seems, at a first glance, to be the pair

S5 + S6 and S5 —S6.

By the operation C3, however, S5 + S6S4 + S5. This shows 
that somehow S4 must enter. Let us try to put U& — fSi + (S5 + <S6). 
i'G must be orthogonal to the other U’s, of which only U2 = 
S4+S5+S6 comes into consideration (all the other U's do not 
depend upon S4, S5, or So). The demand for orthogonality gives

— — 2. UC) — — 2 N4 + (S5 + S6). Let U7 be the symmetry coor
dinate which constitutes a pair together with U6. We try, of 
course, to put U7 = S3 —S6. The necessary conditions, that U7 
should be orthogonal to U2 and U6, are seen to be fulfilled. It 
only remains to show that the requirement of table II concerning 
the covering operation C3 is satisfied. We have

U6 = -2S4 + S5 + S6 
tr7= S5-S6

u* =
=

-2S6 + S4 + ¿
S4-5

This gives

’ ’ 2 ^6 + 2 ^7

1 T 1 rT

=

U\ - _2 ¿ 6~2

that is, the character is —1 in accordance with table II.

In the same way we find U8 = — 2S7 + (S8 + S9)
Ug = ¿>8 — S9.

Being in possession of the connexion between the U’s and the 
S’s we can easily set up the equations of movement a. s. o. The 
results are :



o o

W
(C

H
4)(

Ro
ot

s. îf
o a

/,,
 ^3 

ab
» ''■

la
b'
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3. CH2D2. (Point group C2v).
The characters of the vibrations are given in table III. The 

symmetry element tfn is the plane through 7/(2)— C — 7/(4). The 
deuterium atoms are placed in the 2 and 4 positions (Cig. 1).

Table III.

Covering operations E C-2 Ol> <>d
Number of 

modes
Degree of 
degeneracy

Symmetry classes:
Ai........................................... 1 1 1 1 4 1
Ao.........................................♦. 1 1 -1 -1 1 1
B,.................................... 1 -1 1 -1 2 1
B..................................... 1 -1 -1 1 9 1

Symmetry elements 
especially studied:........ CÏ O'! I

By a rotation af 180 round the 17-axis (symmetry element C2).

i/o I/o
y i y 3
y 2 y 4 
y¡^ y i 
y 4 y 2

By a reflexion in the plane on

æo — ~o
æi
x2 o

æ3 ~1

~4

i/o i/o
y i ih
y 2 y 2
y3 — yi

y4

By means of these relations we are able to lind out how 
the previously used symmetry coordinates Sit S2, ■ ■ ■, S2 vary 
during the symmetry operations C2, tri and tfn, the results being 
recorded at the top of page 18.

If the symmetry coordinates of the A1-class in table III are 
denoted by 7?t, 7?2, 7?3 and 7?4, we immediately find

9
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7?g — S5-( N6. 7?? — Sg + Sg.

The symmetry coordinates of the 7T-class similarly are

7?s — S5 — S6. 7?9 S8 N9.

The relation between vibration frequencies and force constants 
in the symmetry classes A2, and 772 are’:

The A2-class.

 4 2.2^2« A 71 V^a 12 o2
mn

(VI)

The 77rclass.

= 0 (VII)

N1'2

Roots: x3a, x4((.
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The Bo-class.

19

1 a 6 8 mn m I) + mc (mn + mp)
27 0 mHmn mcNs

— mD

mH mD A'3

1 1O mD1 Q «4 + 18-----------— z
18 nh/mD;V3

mD + 3 mH
mHmDN3

= 0

648
= m (4 /nn + 3 mH mn ™c + 12 mo mH + mc •

Roots : z3c, z4c.

V. Numerical Calculation of the Force 
Constants of the Potential Function.

This calculation we shall carry through by utilizing vibration 
frequencies from the spectra of CH4 and C/)4. Afterwards we 
shall pass on to precalculating the vibration frequencies of the 
partly deuterated methanes, everywhere comparing calculated 
and experimentally observed frequencies.

The Raman spectrum of gaseous C//4 has been taken by 
Dickinson, Dillon, and Rasetti1 and by Bhagavantam,2 the latter 
taking depolarisation measurements. The Raman spectrum of CI)4 
has been reported by McWood and Urey.3 The infrared absorp
tion spectrum of methane was studied by Vedder and Mecke,4 
by Benedict, Morikawa, Barnes, and Taylor5 and by Nath.6 
Infrared absorption of Cl)4 seems to have been studied by Bene
dict, Morikawa, Barnes, and Taylor.5 As the best available ex-

2 Bhagavantam, Ind. Jour. Phys. 6, 595 (1931).
3 McWood and Urey, J. Chem. Phys. 3, 650 (1935); 4, 402 (1936).
4 Vedder and Mecke. Zeits. f. Physik 86, 137 (1933).
5 Benedict, Morikawa, Barnes, and Taylor, J. Chem. Phys. 5, 1 (1937). 
h Nath, Ind. Jour. Phys. 8, 581 (1932).

perimental material is chosen :
CW4 CDi

Pi 2915 cm-1 2085 cm’ 1
^2 ab 1530 —
P.3 abc 3020 — 2258 -
P 4 abc 1320 988

1 Dickinson, Dillon., and Rasetti, Phys. Rev. 34, 582 (1929).

(VIII)

2
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For further details of experimental values see table IV below. 
In equation (I) page 13 we substitute zq = 2915 cm“1 and 

get:
= 4.175 • 104 dyne cm“1.

Subsequently we are able to precalculate zq (CD^) = 2068 cm“1. 
Experimentally zq (CD 4) = 2085 cm“1.

In equation (II) page 13 v2ab(CH.i) = 1530 cm“1 is substituted. 
This gives

a2 = 0.5751 - IO4 dyne cm“1.

This permits calculating zqab(C/)4) = 1085 cm“1, which has 
not yet been observed. (Only 2vab = 2108cm“1 has been obser
ved. Hence r2a&(CI)4) = 1054).

Equation (III) page 13 in connexion with the observed fre
quencies 3020 and 1320 cm“1 from the C//4-spectrum and 2258 
and 988 cm“1 from the CD4-spectrum gives

o3 = 5.354-104 dyne cm“1; a4 = ±6.590-IO4 dyne cm“1;
a5 = 4.430-IO4 dyne cm“1.

To solve the problem of the unknown sign of a4 we pass 
on to regard the spectra of Assuming a4 < 0 we calculate
for the vibrations of the A4-class:

This defini telV shows that

«4 > 0 »4 < 0 Exp. determined value:
1040 cm“1 1307 cm“1 1306.8 cm“1
2712 2204 2205
3005 2947 2983

a4 < 0, a result which
fully confirmed by all other calculations involving a4.

is

Vi. Comparison between Calculated Frequen
cies and Experimentally Determined Ones.

In table IV a a survey is taken of the experimental results 
obtained by studying the Raman spectra of methane and deute
rated methanes. Table IV b is a corresponding survey of in
frared absorption data. In table V experimentally determined 
frequencies are stated against calculated ones.
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Table IV a.
Experimentally determined Raman frequencies of 

methane and deuterated methanes.

The frequencies 
over-tones.

CHi ch3d CH2D2 chd3 cd4
Depolarisation 
measurements 

for CW4

»'I 2914.8 - 2139.0 2141.1 2084.7 ç = 0.08

»'Sa

»'3 a

[1535.7] [1460.8]
1332.9

[1458.2]
1299.2 [1054]

3022.1
-

2974.2
2268.6

2258.0 e = 0.80»'3 b

•'Sc

-

2199.5 - -

•'A a

»'4 b

•'Ac

-
1330.1

1285.6

1033.1
[981.7]

-

[1157.4] [1038.3] [1046.4]

Dickinson, 
Dillon, 
Rasetti, 

Phys. Rev.
34, 582 
(1929).

Me Wood and Urey,
J. Chem. Phys. 3, 650 (1935),
J. Chem. Phys. 4, 402 (1936).

<»

Bhagavantam,
Ind. Jour.

Phys. 6, 595 
(1931).

in square brackets have only been found as first

A discrepancy between table IV a and IV b is seen in the 
interpretation of the spectra of CH3D. The calculation on page 20 
above together with the calculations of Dennison and Johnson1 
support the view that the interpretation of the infrared data 
given by Ginsburg and Barker is the more correct one.—For 
reasons to be given below it seems as if the r4(J-frequency in the 
Raman spectrum of CHdK should be interchanged with the u4& 
or r4c frequency.—The marks of interrogation in table IV b 
indicate that the interpretation given is doubtful.

1 Dennison and Johnson, Phys. Rev. 47, 93 (1935).
2 Bakker and Ginsburg, J. Chem. Phys. 3, 668 (1935).

The infrared data of CH2D.¿ found by Barker and Ginsburg’2,
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Table IV b.
Experimentally determined infrared vibration frequencies 

of methane and deuterated methanes.

CHi CH3D CIM)} CHD3 CDi

I'l 2915 2983 - - -

‘'2 a
1530 1477

-
- -

^21, 1450

‘'3 a

“3 b 3020
3031

2255?

9
2260

2258

“3 c 2205 3020? 3000

^4 a

“Ab 1320
1156.3

.1235?

1035?
988

988

“Ac 1306.8 1035? 988

Vedder and
Mecke, Zeits.

f. Phys. 86,
137 (1933).

Ginsburg 
and Barker, 

.1. Chem. 
Phys. 3, 668 

(1935).

Benedict, Morikawa, Barnes, 
Taylor, .1. Chem. Phys. 5, 1 (1937).

Benedict et al.1 unfortunately are published in a manner so as 
to make the assignment of frequencies doubtful. In referring to 
vibration frequencies of methane and the isotopic molecules two 
systems have been used: the system of Rosenthal, denoting 
frequencies by v2a a. s', o., and, in the case of CH2D2, 
the system of Dennison, where the frequencies are denoted in 
accordance with the way in which the electrical moment varies 
during the vibration, ‘M’, ‘L’, or ‘G’ being put before or after the 
frequency figures. Unfortunately none of these systems was 
employed in the papers of Barker and Benedict.—Another 
circumstance contributing to the confusion as regards the CH.2D.>- 
spectrum lies in the fact that undoubtedly the early precalcu
lation of frequencies made by Dennison has played a more 
dominant rôle than has purely experimental studies (fine struc-

Benedict, J. Chem. Phys. 5, 1 (1937). 
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ture of the single bands a. s. o.) by the assignment of frequencies. 
Il seems, however, as if some sort of mistake has got into the 
paper of Dennison and Johnson. As mentioned the vibrations 
are classified as ‘J/’, 7/, or ‘G’ vibrations, this being convenient, 
because the CH2D2 molecule has three unequal moments of 
inertia. The axis about which the moment of inertia is the least, 
is denoted by 7/, the axis of middle moment of inertia by ‘Jf’ 
and the axis of greatest moment of inertia by ‘G’. A vibration 
by which the electrical moment varies along the *// axis, is 
called an 7/ vibration a. s. o.—In their paper Dennison and 
Johnson state that

‘//-frequencies should be at 3013 and 1082 cm-1.
‘G’- — .   2227 and 1228 -

It is easy to show that ‘//-frequencies are the frequencies 
of the /?2-class (here denoted by r3c and r4c), while the ‘G’-fre- 
quencies are the frequencies of the Gj-class (here denoted by 
v3a and v4a). By the precalculation of C//2D2-frequencies made 
in this paper, it is found that

‘//-frequencies should be al 2258 and 1230 cm-1. 
‘G’- —    3021 - 1093 -

Fig. 5 a shows the CH2D2 molecule in the M, L, G coordinate 
system, figs. 5 b and 5c show a ’G’ and an 77 vibration.

As will be seen we must expect to lind a hydrogen ‘valence’ 
vibration among the ‘G’-vibrations, that is, one of the ‘G’-vibra- 
tions should be located in the neighbourhood of 3000 cm-1. Si
milarly a deuterium ‘valence’ vibration must be among the 7/- 
vibrations, that is, one of the 7/ vibrations must be near 
2200 cm-1. These facts are reproduced best by the calculation 
made in this paper, while Dennison and Johnson, in their 
paper, come to the opposite conclusion.

In table V theoretically computed and experimentally found 
frequency values are compared. By the assignment of frequencies 
of the C//2Z)2-spectrum, one has been chosen which is consistent 
with the frequency values calculated here.
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Table V.

1 McWood and Urey, Zoc. oil.
2 Barker and Ginsburg, loc. cit.

— ——
Calculated by

Dennison
Experimentally determined Calculated in 

this paper

2914 2915 2915

cm r-2 1520 1530 1530
,73 3014 3020 3023
"4 1304 1320 1312

2061 2085 2068

Cl)i ¡'l 1075 1054 1085
1'3 2227 2258 2258
l'i 987 988 988

n 2944 2983 2947
^ab 1460 1477 1458

CH3D ^'3 ab 3013 3031 3022
^3e 2183 2205 2204
f'iab 1151 1156 1177

r4e 1300 1307 1307

^1 2101 2141 2114
t'2ab 1286 1299 1264

CDIh ^3 ab

>'3<-

2222
2992

2260
3000

2292
2998

Vi ab 1020 988 1020
V4c 994 988 1002

2141 2139 —
"2 a 1317 1333 1326
V2b 1424 1458 —
1'3 a 2227 2974 3021

cmjh V3 b 2969 — —
V3e 3013 — 2258
b'i a 1228 1038 1090 1093
i'ib 1019 1033 I

He 1151 1285 1235 1230
(Raman1) | (Infrared2)
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VIL Physical Significance of the Results 
Obtained.

In order to be able to give an account of the above results 
in a lucid form—which will, at the same time, enable us to 
make comparisons between methane and other molecules—it 
is necessary to study the intramolecular forces in some per
spicuous cases. In what follows two cases of special simplicity 
will be examined.

Case 1.
In this case the carbon atom and H (1) are thought to be bound 

to their equilibrium positions by some imaginary forces. II (2), 
H(3), and H (4) are given the same displacement along the direc
tion carbon-hydrogen. The situation is illustrated in fig 6.

Fig. 6.

The displacements have been chosen so that

•T0 - 0 I/o = 0 -o = 0
■1'1 = 0 ?/i = 0 -i = o S\ 9 S4 - — 1 S 7 2

— -1 y> = i -2 = 1 S2 = 0 s5 = - 1 S8 = 2

æ3 = — 1 i/s = ! ~3 = - 1 s3 = 0 s6 = 1 S9 ~ 2

.r4 = 1 y 4r - 1 z4 - - 1

The force acting upon hydrogen atom no. ./' in the direction 
of the X-axis (fig. 1) being denoted as Kn^y (X) it is easily shown that
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■9a1 + a3 2 a4 + 4 a5 Æ//(1)(Z).

Æ//(2) (X) = 9 cq + a3 — a4 = KH(2)(Y).

Kii(2) (Z) = - 9 ax + a3 — 4a5
KC(X) = 4(a4 —a3) = /<C(Y) = KC(Z).

In nnits of 104 dyne cm-1 the values of the constants are

= 4.175 a2 = 0.5751 a3 = 5.354 u4 = —6.590 a5 = 4.430.

By insertion of these values we get

^7/(1)^^ = 1*321 = A//(])(y) — A//(1)(Z).

By AH(1) we denote the resulting force acting upon II (1). Con
sequently

A//(1) = + 1.32113 = 2.288.
^77(2) = 32.14 
Kc = 79.29

The calculation shows that the movements of the hydrogen 
atoms along the direction carbon-hydrogen take place approxi
mately independently of each other.

Case 2.
As appears from fig. 7 H(l) is displaced perpendicularly 

to the C-H (l)-direclion. All the other atoms are kept in their 
equilibrium positions. For this displacement oq = z4 = 1. y7 = —2.

= S3 = 0 S2 = - 6. S4 = S7 = - 2 S5 = S6 = S7 = S8 = 1.

77(1) — 6 a2 — a:. — a4 — a5 ^/7(l) O) 12 ct2 + 2 ct% + 2a4 + 2a5
77 (2) C^) = 6 a2 — a3 — 2 a4 — 3 a5 O') = —12 a2 + 2 a3 + «4

77(3) “ 6 a2 — a3 + a4 + 3 a5 Ktf (3> C ) — 12 a2 + 2 a 3 - 2 a5
77(4) ) —■ 6 «2 — a3 + il5 /<(,(4)O') -12a2 + 2a3 + «4

■c (*) = 4a3 + 2a4 kcO') = — 3 a3 — 4 a4

Kh W(Z) = — 6 ct2 — a3 — cr4 — a5
^77 (2) C^) — 6 a2 — a3 + «5

^77 (3) 6 U2 — a3 + a4 + 3 a5
^77 (4) (^)

a;.(z) -
6 a,— a3 — 2 a4 — 3 a5

4 a3 + 2 a4
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By substitution of numerical values we find

16.27. 5.55. ^h(3) 11-0. ^w(4) 5.55. Kc 20.18.

Movements of the hydrogen atoms perpendicular to the car
bon-hydrogen bond could not be considered as being independent 
of each other.

At the present stage the study of general quadratic poten
tial functions of polyatomic molecules is hardly possible because 
of the great number of constants involved in the potential func
tion. At present it seems impossible to avoid the use of empi
rical rules stated with certainty in the case of simple molecules. 
Such rules would give some relations between the (theoretic
ally independent) force constants. Let us e. g. consider the rule

stated in Case 1 for methane. If a more general validity of this 
rule could be secured, it would be a great help, e. g. in the 
study of the ethane molecule. Il seems natural to assume, how
ever, that deviations from the above rule are more likely to 
occur in dealing with molecules possessing an electronic struc
ture essentially different from the electronic structure of methane. 
Here the acetylene molecule represents a good test example. In 
the following chapter a brief treatment of the acetylene molecule 
is given. The result is that the validity of the rule, stated 
in Case 1 for methane, is shown in the case of acetylene, 
too. The writer hopes to be able to demonstrate the use of 
this and similar valuable empirical rules in future work.
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VIII. Brief Treatment of the Acetylene 
Molecule.

The distribution of the vibrations of C2 H2 and C2 />2 (point 
group 7)^,,) has been given by Glöckler and Morrell.1

Table VI.

Class Sym. Antisym. Number of 
frequencies

Degree of 
degeneracy

Vibration 
frequencies

Ai................. Coo> o'p» i 2 1 Fj To

A o................. d 00 9 9 i 1 1 E.l

Bi................. Gv, i 1 2 »'4. 5

b2.............. GP xi i 1 2 7

Corresponding to the frequency denotation the 
coordinates are defined as follows:

symmetry

kSo — X2 æ3 •

Ng = Xo+ jq—X2—Xg.

¿>4 = fl (.Vo — V1 ) — V2 + i/o-

= — ( z0 + rt) + z2 r3.

S6 = Vo + Vi - y-2 — Vs-

*^7 ~ ~0 H- ~1 '2 ~3’

the acetylene molecule being placed in the coordinate system as 
demonstrated in fig. 8.

«------R--------

-------------- (------------- .--------------------- ---------------------- .------------- .------------------- > X
H (2) C (0) z C (1) H (3)

Fig. 8.

1 Glocki.er and Morrell, J. Chem. Plivs. 4, 15 (1936).
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Relations between force-constants and vibration frequencies.
The potential contribution of the A1-class is formulated as

/ 2 V = cq + a2 S2 + a.? 5.,.

Consequently the secular equation becomes

2 - ni(. 7, a3
= 0. (1)

(l:i 2 «2
Roots: zx and z2

The A2-class.

,/2 V «4 S3 ■ «4 = 2 (2)(m„+ mc)*3.

The -class.

The B-class.

The numerical values of the above-mentioned force constants 
will now he calculated on the basis of data from Raman and 
infrared spectra of C2 H2 and C2D2. A good survey of the experi
mental material available is given by Stitt.1 Beneath the experi
mentally determined vibration frequencies are stated.

C2 Hi-
Bhagavantam and Hao, Proc. Ind. Acad. Sei. 3 A, 135 (1936) (77). 
Gi.ocklek and Morrell, J. Chem. Phys. 4, 15 (1936) (7).
The same references as for »1.

j Levin and Meyer, J. Opt. Soc. Am. 16, 137 (1928) (7). 

Mecke and Ziegler, Zeits. f. Phys. 101, 405 (1936) (7).

0 -2 D -2.
J Glöckler and Morrell, ,I. Chem. Phys. 4, 14 (1936) (7).

> Fred Stitt, J. Chem. Phys. 8, 56 (1940) (7).

(7) = Infrared absorption; (77) = Raman spectrum.

Stitt, .1. Chem. Phys. 8, 56 (1940).
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Calculation of the force-constants and their physical 
significance.

By means of (1), (2), (3), and (4) we find:

= 19.15 -105. a2 = 2.893-10’. o3 = ± 6.075• 105.
a4 = 2.938-105. a5 = 0.6730-104. a6 = 1.448-104 dyne cm“1.

To check the correctness of these numerical values we shall 
precalculate the vibrations frequencies of the C2Z//J-molecule.

The vibrations of this molecule are distributed on two sym
metry-classes, one class of linear vibrations and another of non
linear ones. The secular equation for the linear vibrations is

0«3

«3 M (C2HD) = 0 (5)

0
M(Ca//D) M(C2TO)

For the non-linear vibrations I have only evaluated

6 2 1

c

explicit form, omitting to write down the secular equation

2 a4

2u2

c — z

C 
— Z

m 
explicitly.

(mH — mJ m

(mH — mJ m 
Al (C2Hfí)

2 flt — m(, x

C2H2 C2III) C2D2

Calculated Observed Calculated Observed Calculated Observed

1985 1974 1851 1851 1747 1762
3366 3372 3332 3340 2710 2700
3288 3288 2576 2560 2420 2428

730 730 674 679 537 539
612 612 518 523 512 506
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The table at the bottom of page 31 shows the result of pre
calculating the complete vibration spectra of C2H2, C2H1), and 
C.JT, using the numerical values of the force constants just given. 
As will be seen from (5) the spectrum of CJ)II does not help 
us to find the correct sign of a3, as only a3 enters.

Having thus demonstrated the correctness of the force-constants 
we proceed to study the intramolecular forces. II(3) is displaced 
from its equilibrium position as shown in tig. 9.

^H(3) a2 + a4.

Substituting the numerical values for the force-constants we get

H(2) C (0) C(l)
Fig. 9.

H(3)

We choose a'3 = “ 1 and Set S1 = S4 = 3-, == $6 =

= = i-
By means of the usual procedure we find

^c(O) — 2 °''' a*’ ^C(i) 2 03 °4’ = ~a2

a3 < 0 «3 > 0

.............. 0.0989 - 5.9761
-5.9761 0.0989

.......... 0.0455 0.0455
^H(3).............. 5.8317 5.8317

Independently of the sign of n3 it is seen that Kn<2yKH^ has 
about the same value as found by the corresponding displacement 
by methane. The two hydrogen atoms move independent
ly.—As it seems correct to assume that the force acting upon the 
carbon atom beside the displayed hydrogen atom, is the greater, 
we see that a3<0. This means, however, that beyond the 
neighbour carbon atom scarcely any effect is exerted 
by the hydrogen atom attacked. As already mentioned this 
is the same rule as developed by methane, and it should be 
mentioned that it is also valid in the case of II—C = N, as 
shown in the present writer’s doctor’s thesis.1

1 B. Bak, Det indremolekylære Potential, Kbhvn. 1943.
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IX. Summary.
(1) The equations between vibration frequencies of methane 

and deuterated methanes have been deduced. It is proposed that 
the ideas of Howard and Wilson in connexion with the group
theoretical tables by Rosenthal should be more commonly used 
in solving vibrational problems.

(2) By means of vibration frequencies from the spectra of 
CH4 and CD4, numerical values of 5 ‘harmonic’ force constants 
have been calculated. This makes it possible to precalculate the 
entire spectra of all the partly deuterated methanes. The agree
ment between observed and calculated values as a rule is excellent.

(3) Empirical rules which might be of use in dealing with 
more complex molecules have been looked for, and it is shown 
that the displacement of a hydrogen atom towards its adjoining 
carbon atom produces little effect on all the other atoms of the 
molecule. It is demonstrated that the rule holds good, too, in 
the case of C2Z/.2 and HCN.

Universitetets kemiske Laboratorium,
Copenhagen.

Indleveret til Selskabet den 17. September 1945.
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